
Spectral vs. Fourier Neural Operators in Parametric
PDE Modeling: Analysis and Experiments

Jizhou Guo
Zhiyuan College, Shanghai Jiao Tong University

sjtu18640985163@sjtu.edu.cn

Abstract

We compare Fourier Neural Operators (FNOs) and Spectral Neural Operators
(SNOs) for learning solution operators of parameterized partial differential equa-
tions. While FNOs leverage truncated Fourier transforms for mesh-invariant con-
volutions and satisfy universal approximation property, they suffer from aliasing
errors, impeding its performance in certain scenarios. SNOs instead expand in-
puts and outputs in a fixed global spectral basis, eliminating aliasing and yield-
ing directly interpretable spectral coefficients. We prove universal approxima-
tion results for FNOs, analyze the sources of aliasing in FNOs, and describe
how SNOs avoid these issues. Two methods are benchmarked on Burgers, KdV
and KS equations. Our source code for numerical experiments is available at
https://github.com/aster2024/SNO_vs_FNO.

1 Introduction

Many applications in science and engineering - ranging from aerodynamics design to subsurface
flow modeling - require repeated solves of parameterized partial differential equations (PDEs) at
high resolution. Classical numerical methods such as finite difference, finite element, or spectral
solvers achieve high accuracy but incur steep computational costs when employed in inverse design,
uncertainty quantification, or real-time control loops.

Data-driven surrogate models have emerged as a compelling alternative: once trained, they can
evaluate the solution operator in milliseconds, enabling rapid parameter sweeps and real-time decision
making. However, standard neural networks map between finite-dimensional discretizations and
suffer from mesh dependence, lack of resolution invariance, and inability to query arbitrary points in
the domain [Kovachki et al., 2021].

Neural operators [Anandkumar et al., 2020, Li et al., 2020] directly learn mappings between infinite-
dimensional function spaces. The Fourier Neural Operator (FNO) Li et al. [2021] replaces integral
kernels with convolutions in the Fourier domain, leveraging the FFT for quasi-linear complexity
and demonstrating zero-shot super-resolution. Yet FNOs introduce a critical limitation: Nonlinear
activations generate high-frequency harmonics that fold back into the truncated spectrum, leading to
inconsistent multi-grid evaluations and reduced accuracy in high-precision regimes [Fanaskov and
Oseledets, 2023, Bartolucci et al., 2023].

Spectral Neural Operators (SNOs) [Fanaskov and Oseledets, 2023] address such issue by expanding
both input and output functions in a chosen global basis (e.g. Chebyshev or Fourier polynomials).
The network then learns a mapping on the coefficient vectors, ensuring exact alias-free operations.

In this work, we carry out a systematic theoretical and empirical comparison of FNOs and SNOs:

• We illustrate the architecture of FNO, and prove universal approximation theorems for
FNOs.

Course Project for MATH3550: Numerical Methods for Ordinary and Partial Differential Equations.

https://github.com/aster2024/SNO_vs_FNO

• We characterize the aliasing mechanisms in FNO layers by theoretical analysis and numerical
experiments, and show that SNOs avoid such issue.

• Through numerical experiments on Burgers’ equation, KdV equation and KS equation, we
evaluate the performance of FNOs and SNOs.

2 Related Work

This section outlines the landscape of numerical PDE solvers, contrasting traditional methods with
emerging data-driven approaches. We then delve into specific neural network-based strategies for
PDE solving, highlighting their strengths and limitations, with a particular emphasis on the advantages
offered by neural operators.

Traditional Solvers vs. Data-Driven Methods Conventional solvers, such as Finite Element
Methods (FEM) Grossmann [2007] and Finite Difference Methods (FDM) Ciarlet [2002], Brenner
[2008], discretize the spatial domain to approximate solutions to PDEs. These methods inherently
involve a trade-off between computational cost and accuracy. Coarse discretizations offer faster com-
putation but compromise accuracy, while fine discretizations provide higher accuracy at the expense
of increased computational time. Complex PDE systems often necessitate very fine discretizations,
posing significant computational challenges for traditional solvers. In contrast, data-driven methods
offer the potential to learn the solution manifold directly from data, enabling significantly faster
solution times compared to conventional solvers [Raissi et al., 2019, Kochkov et al., 2021]. Machine
learning techniques are increasingly viewed as a key to revolutionizing scientific computing by
providing fast, accurate approximations or enhancements to traditional solvers. However, many early
machine learning approaches were limited by their dependence on specific discretizations.

Finite-Dimensional Operators These methods parameterize the solution operator as a deep con-
volutional neural network mapping between finite-dimensional Euclidean spaces Guo et al. [2016],
Adler and Öktem [2017], Bhatnagar et al. [2019]. A major limitation is their mesh-dependent nature,
requiring modifications and tuning for different resolutions and discretizations to achieve consistent
error. Furthermore, they are restricted to the discretization size and geometry of the training data,
preventing querying solutions at new points within the domain.

Neural-FEM This approach directly parameterizes the solution function as a neural network [Bar
and Sochen, 2019, Raissi et al., 2019, Pan and Duraisamy, 2020]. While mesh-independent and
accurate, Neural-FEM is designed to model only a specific instance of the PDE, rather than the general
solution operator. Each new instance of the functional parameter or coefficient requires training a
new neural network. This approach shares computational challenges with classical methods, as the
optimization problem must be solved for every new instance. Moreover, it is limited to scenarios
where the underlying PDE is known.

Neural Operators Neural operators represent a recent advancement, enabling the learning of mesh-
free, infinite-dimensional operators using neural networks [Anandkumar et al., 2020, Li et al., 2020].
These operators overcome the mesh-dependent limitations of finite-dimensional operator methods
by providing a single set of network parameters applicable to different discretizations, facilitating
solution transfer between meshes. Furthermore, neural operators require training only once; obtaining
solutions for new parameter instances involves only a forward pass through the network, mitigating
the computational burden associated with Neural-FEM. Importantly, neural operators require no
prior knowledge of the underlying PDE, relying solely on data. However, a challenge remains in
developing efficient numerical algorithms for neural operators that can match the performance of
convolutional or recurrent neural networks in finite-dimensional settings, primarily due to the cost
of evaluating integral operators. This work addresses this challenge by leveraging the fast Fourier
transform and spectral decomposition.

3 Problem Statement

Let D ⊂ Rd be a bounded, open domain and consider two separable Banach spaces

A = A(D;Rda), U = U(D;Rdu),

2

whose elements are parameter functions a : D → Rda and state functions u : D → Rdu , respectively.
We assume there exists an (unknown) solution operator

F∗ : A −→ U ,

typically arising from a parameterized partial differential equation (PDE), so that for each a ∈ A, the
corresponding solution is u = F∗(a).

In practice, we observe a finite dataset

{(aj , uj)}Nj=1, aj ∼ µ and uj ≈ F∗(aj),

where µ is an (unknown) probability measure on A and each uj may be corrupted by noise. Our goal
is to construct a parametric family of mappings

Fθ : A −→ U , θ ∈ Θ ⊂ Rp,

such that Fθ ≈ F∗ in the sense of minimizing the expected discrepancy

min
θ∈Θ

Ea∼µ

[
L
(
Fθ(a), F∗(a)

)]
,

for a suitable loss functional L : U × U → R (e.g. an L2 error).

Unlike classical PDE solvers or physics-informed networks, which solve one instance of the PDE at
a time, our aim is to learn the entire operator F∗ so that a single forward evaluation of Fθ yields
the solution u for any new a. This shift from per-instance solution to operator approximation offers
substantial savings when multiple queries are needed.

Since both inputs and outputs are functions, we only have access to their pointwise evaluations on
finite grids

Dj = {xj,1, . . . , xj,nj} ⊂ D, aj
∣∣
Dj
∈ Rnj×da , uj

∣∣
Dj
∈ Rnj×du .

A key requirement is discretization-invariance: once trained, Fθ should accept data on any grid
D′ ⊂ D, possibly of different resolution or geometry, and produce a consistent approximation of the
continuum solution. This property enables zero-shot transfer across meshes without retraining.

In summary, our problem is to design a learnable, finite-parameter mapping Fθ that

• approximates the true operator F∗ in the infinite-dimensional setting,

• is trained on a finite collection of discretized input–output pairs, and

• yields mesh-independent predictions on arbitrary point-sets in D.

4 Fourier Neural Operator

We describe the architecture of Fourier Neural Operator (FNO) [Li et al., 2021] for learning operators
mapping coefficient functions a(·) to solution functions u(·) in parameterized PDEs.

Let D ⊂ Rd be the computational domain and define the input and output spaces

A = { a : D → Rda}, U = {u : D → Rdu}.

Our goal is to approximate the true solution operator F∗ : A → U , u = F∗(a), from data {(aj , uj)}.
We introduce a trainable map Fθ defined by the following iterative procedure. First, a pointwise lift

v0(x) = P
(
a(x)

)
∈ Rdv (4.1)

encodes the input into a higher-dimensional feature space via a small fully-connected network P .
Then for t = 0, . . . , T − 1 we update1

vt+1(x) = σ
(
Wt vt(x) + bt(x) + (Ktvt)(x)

)
, (4.2)

1In the original paper of Li et al. [2021], there is actually no bias term bt(x). However the bias term exists in
Kovachki et al. [2021], and to support our theoretical study in Section 5, we keep the bias term here.

3

(a) FNO Architecture: Starting from input a, the model: 1. Lifts a to a higher-dimensional channel space using
a neural network P . 2. Applies four layers of integral operators and activation functions sequentially. 3. Projects

back to the target dimension via a neural network Q, resulting in output u. (b) Fourier Layer Details:
Beginning with input v: The upper branch applies the Fourier transform G, performs a linear transform R on the
lower Fourier modes while filtering out higher modes, and then applies the inverse Fourier transform G−1. The

lower branch applies a local linear transform W .

Figure 1: top: FNO Architecture; bottom: Fourier Layer Details.

where Wt ∈ Rdv×dv and bt(x) define a pointwise affine mapping (corresponding to weights and
biases), σ is a pointwise activation (e.g. ReLU), and Kt is a global linear operator. Finally, the
solution is recovered by the projection

u(x) = Q
(
vT (x)

)
, (4.3)

with Q : Rdv → Rdu another small network. The architecture is illustrated in Figure 1 (a).

In the Fourier Neural Operator we choose Kt to be a convolution with a translation-invariant kernel
κt : Rd → Rdv×dv . By the convolution theorem,

(Ktv)(x) =

ˆ
D

κt(x− y) v(y) dy = F−1
(
κ̂t · v̂

)
(x), (4.4)

where v̂(k) =
´
D
v(x)e−2πi k·x dx. We parameterize only the low-frequency multipliers κ̂(k) ∈

Cdv×dv for |kj | ≤ Kj , truncating all higher modes to zero. Concretely, on a uniform discretization
of D with n1 × · · · × nd points we compute

v̂t = FFT(vt), v̂′t(k) = R(k) v̂t(k), v′t = FFT−1(v̂′t),

where R(k) ≡ κ̂(k) for |kj | ≤ Kj and FFT denotes Fast Fourier Transform [Cooley and Tukey,
1965]. We provide an illustration for Fourier Layer in Figure 1 (b). This Fourier layer incurs
O(n log n+K d2v) cost per update, with n =

∏
j nj andK =

∏
j(2Kj +1), while requiring grids to

be equispaced to apply FFT. Additionally, Lingsch et al. [2024] proposes a method that replaces FFTs
with small matrix–vector products to compute truncated Fourier (or spherical-harmonic) transforms
directly on arbitrary, non-equispaced point clouds, resulting in O(mN) complexity, where m is the
dimension of the computed Fourier modes.

Remark 4.1. The most straightforward example of a FNO is constructed as follows: Let N̂ : Rda →
Rdu be a standard finite-dimensional neural network with activation function σ. We can associate
with N̂ the mapping N : L2(Td;Rda) → L2(Td;Rdu), defined by a(x) 7→ N̂ (a(x)). It is easy to
see that N is a FNO, as it can be expressed in the form

N̂ = Q̂ ◦ L̂L ◦ · · · ◦ L̂1 ◦ R̂,

where R̂(y) = Ry with R ∈ Rdv×da , and each layer L̂ℓ is of the form L̂ℓ(y) = σ(Wℓy + bℓ) for
some Wℓ ∈ Rdv×dv , bℓ ∈ Rdv . Here, Q̂ is an affine output layer of the form Q̂(y) = Qy + q with
Q ∈ Rdu×dv , q ∈ Rdu . By replacing the input y with a function v(x), these layers become a specific

4

instance of the FNO lifting layer (4.1), the non-linear layers (4.2) (with Pℓ ≡ 0 and constant bias
bℓ(x) ≡ bℓ), and the projection layer (4.3). Therefore, any finite-dimensional neural network can be
regarded as a FNO as defined above.

Because R(k) and W are independent of the mesh spacing, the same trained parameters can be
applied to any coarser or finer uniform grid without retraining, enabling zero-shot super-resolution.
The FFT-based convolution captures global dependencies efficiently, while the pointwise activation σ
injects nonlinearity, allowing the network to approximate highly non-linear solution operators. In
addition, we showcase the universal property in Section 5, i.e., FNOs can approximate any continuous
operator to desired accuracy.

5 Universal Approximation Properties of FNOs

We now establish that FNOs possess universal approximation capabilities [Kovachki et al., 2021],
meaning that for any given class of operators, we can construct an FNO that approximates it with
arbitrary precision. The framework for our analysis is presented below:

Setting 5.1. Let d ∈ N be a fixed spatial dimension, and let D ⊂ Rd represent a domain in Rd. We
focus on approximating operators of the form G : A(D;Rda) → U(D;Rdu), where a 7→ u := G(a).
Here, the input a ∈ A(D;Rda) with da ∈ N is a function a : D → Rda having da components,
while the output u ∈ U(D;Rdu) with du ∈ N is a function u : D → Rdu having du components.
The spaces A(D;Rda) and U(D;Rdu) are assumed to be Banach spaces (or appropriate subsets
thereof). Common examples include the space of continuous functions C(D;Rdu) and Sobolev
spaces Hs(D;Rdu) of order s ≥ 0. The definition of the notations is included in Appendix A.

We proceed to demonstrate that FNOs possess universal approximation properties. Specifically, for
any broad class of operators as specified in Setting 5.1, one can construct an FNO that approximates
the target operator to any desired level of accuracy. This result is formalized in the following theorem2.

Theorem 5.2 (Universal approximation property). Let s, s′ ≥ 0 be given. Consider a continuous
operator G : Hs(Td;Rda) → Hs′(Td;Rdu) and let K ⊂ Hs(Td;Rda) be a compact subset. Then
for any tolerance ϵ > 0, there exists an FNO N : Hs(Td;Rda) → Hs′(Td;Rdu) of the form (4.4),
which is continuous as an operator Hs → Hs′ , such that

sup
a∈K

∥G(a)−N (a)∥Hs′ ≤ ϵ.

Proof. For notational simplicity, we assume da = du = 1 throughout; the extension to general
da, du > 1 follows by analogous arguments. We first observe the following lemma, which is proved
in Appendix B.1:

Lemma 5.3. If the universal approximation Theorem 5.2 holds for s′ = 0, it holds for arbitrary
s′ ≥ 0.

We define an operator GN that maps functions from the Sobolev space Hs(Td) to L2(Td) as follows:

GN (a) := PNG(PNa), (5.1)

where PN is the orthogonal Fourier projection operator defined in Appendix A (A.6). Essentially,
GN can be viewed as the Fourier projection of the operator G.

Next, we can demonstrate that for any specified ϵ > 0, there exists a natural number N ∈ N such that

∥G(a)− GN (a)∥L2 ≤ ϵ, ∀ a ∈ K. (5.2)

2In practice, as evaluating the Fourier transform is impossible since it requires computing an integral exactly,
we should compute discrete Fourier Transform between layers of the FNO instead. Its theoretical framework is
introduced in Kovachki et al. [2021]

5

Consequently, the problem is reduced to finding a Fourier Neural Operator (FNO) (4.4) capable of
approximating the operator GN with arbitrary precision.

We define the set KN containing Fourier wavenumbers k:

KN := k ∈ Zd | |k|∞ ≤ N, (5.3)

and introduce the Fourier conjugate (or dual) operator ĜN : CKN → CKN :

ĜN (âk) := FN

(
GN

(
Re
(
F−1

N (âk)
)))

, (5.4)

such that the following identity holds:

GN (a) = F−1
N ◦ ĜN ◦ FN (PNa), (5.5)

This identity is valid for all real-valued functions a ∈ L2(Td). Here, FN and F−1
N represent the

discrete Fourier transform and its inverse, respectively, as defined in Appendix A (A.9) and (A.10).

The subsequent steps in the proof involve utilizing the decomposition of the projection GN in (5.5),
which expresses it in terms of the discrete Fourier transform FN ◦ PN , the discrete inverse Fourier
transform F−1

N , and the Fourier conjugate operator ĜN . We aim to approximate each of these
operators using Fourier neural operators.

We begin by defining

R2KN =
(
R2
)KN

(≃ CKN), (5.6)

as the set of coefficients {(v1,k, v2,k)}k∈KN
, where vℓ,k ∈ R are indexed by a tuple (ℓ, k), with

ℓ ∈ {1, 2} and k ∈ KN . We interpret the operator FN ◦ PN as a mapping FN ◦ PN : a 7→
{(Re(âk), Im(âk))}|k|≤N , where the input is a ∈ L2(Td) and the output {Re(âk), Im(âk)}|k|≤N ∈
R2KN is considered a constant function in L2(Td;R2KN). Approximating this operator is a direct
consequence of the following lemma, which is proven in Appendix B.2:

Lemma 5.4. Let B > 0 and N ∈ N be given. For any ϵ > 0, there exists a FNO N : L2(Td) →
L2(Td;R2KN), v 7→ {N (v)ℓ,k}, with constant output functions (constant with respect to x ∈ Td),
such that

∥Re(v̂k)−N (v)1,k∥L∞ ≤ ϵ

∥Im(v̂k)−N (v)2,k∥L∞ ≤ ϵ

}
∀ k ∈ Zd, |k|∞ ≤ N,

for all ∥v∥L2 ≤ B, where v̂k ∈ C represents the k-th Fourier coefficient of v.

In the next step, we approximate the (discrete) inverse Fourier transform F−1
N using an FNO. Since

FNOs operate on functions rather than constants, we interpret the mapping

F−1
N : [−R,R]2KN ⊂ R2KN → L2(Td),

as a mapping

F−1
N :

{
L2(Td; [−R,R]2KN) → L2(Td),

{Re(v̂k), Im(v̂k)}|k|≤N 7→ v(x),

where the input {Re(v̂k), Im(v̂k)}|k|≤N ∈ [−R,R]2KN is identified with a constant function in
L2(Td; [−R,R]2KN). The existence of an FNO of the form (4.4) that can approximate the above
mapping to a desired accuracy follows from the subsequent lemma, proven in Appendix B.3:

Lemma 5.5. Let B > 0 and N ∈ N be given. For any ϵ > 0, there exists a FNO N :
L2(Td;R2KN) → L2(Td), such that for any v ∈ L2

N (Td) with ∥v∥L2 ≤ B, we have

∥v −N (w)∥L2 ≤ ϵ,

where w(x) := {(Re(v̂k), Im(v̂k))}k∈KN
, i.e., w ∈ L2(Td;R2KN) is a constant function containing

the real and imaginary parts of the Fourier coefficients v̂k of v.

6

We first address the simplified case where s′ = 0, leveraging Lemma 5.3. That is, given a continuous
operator G : Hs(Td) → L2(Td), a compact set K ⊂ Hs(Td), and tolerance ϵ > 0, we aim to
construct an FNO N : Hs(Td) → L2(Td) satisfying supa∈K ∥G(a)−N (a)∥L2 ≤ ϵ.

Let PN denote the orthogonal Fourier projection given by (A.6) for N ∈ N. We begin by observing
that since K ⊂ Hs(Td) is compact, the extended set K̃ defined by

K̃ := K ∪
⋃
N∈N

PNK

is also compact (this follows from standard arguments). The continuity of G implies that its restriction
to K̃ is uniformly continuous, meaning there exists a modulus of continuity function ω : [0,∞) →
[0,∞) such that

∥G(a)− G(a′)∥L2 ≤ ω (∥a− a′∥Hs) , ∀ a, a′ ∈ K̃.

Using the definition of the projected operator GN from (5.1), we obtain:

∥G(a)− GN (a)∥L2 ≤ ∥G(a)− PNG(a)∥L2 + ∥PNG(a)− PNG(PNa)∥L2

≤ ∥G(a)− PNG(a)∥L2 + ∥G(a)− G(PNa)∥L2

≤ sup
v∈G(K̃)

∥(1− PN)v∥L2 + ω

(
sup
a∈K̃

∥(1− PN)a∥Hs

)
. (5.7)

The compactness of K̃ ensures that G(K̃) is also compact, which yields:

lim sup
N→∞

sup
v∈G(K̃)

∥(1− PN)v∥L2 = 0 = lim sup
N→∞

sup
a∈K̃

∥(1− PN)a∥Hs .

Therefore, there exists N ∈ N large enough such that

∥G(a)− GN (a)∥L2 ≤ ϵ, ∀ a ∈ K ⊂ K̃. (5.8)

The remainder of our proof focuses on constructing an FNO approximation for GN . Note that GN

defines a continuous mapping GN : L2(Td) → L2(Td) via a 7→ PNG(PNa), andK remains compact
when viewed as a subset ofL2(Td). We will establish the existence of an FNO N : L2(Td) → L2(Td)
such that

sup
a∈K

∥GN (a)−N (a)∥L2 < ϵ.

The restriction of N to Hs(Td) ⊂ L2(Td) then provides the desired approximation of G:

sup
a∈K

∥G(a)−N (a)∥L2 < 2ϵ.

Since ϵ > 0 was arbitrary, this establishes our claim.

As outlined in our proof strategy, the construction of an FNO approximating GN relies on the decom-
position (5.5), which involves the Fourier conjugate operator ĜN defined in (5.4). We demonstrate
that each component in the decomposition (5.5) can be approximated by FNOs to arbitrary accuracy.

Given ϵ > 0, we select constants RK , RK̂ , RĜ > 0 such that

K ⊂ BRK
(0) := {∥u∥L2 ≤ RK} ⊂ L2(Td),

FN ◦ PN (BRK
(0)) ⊂

[
−
RK̂

2
,
RK̂

2

]2KN

,

ĜN

(
[−RK̂ , RK̂]2KN

)
⊂
[
−
RĜ
2
,
RĜ
2

]2KN

.

(5.9)

These bounds ensure that each FNO in our composition maps its domain appropriately into the domain
of the subsequent FNO. We now construct FNO approximations for each step in the composition
GN = F−1

N ◦ ĜN ◦ (FN ◦ PN):

7

FNO approximation of F−1
N : We begin by constructing an FNO approximation for the final step in

our composition. We interpret the mapping

F−1
N : [−R,R]2KN ⊂ R2KN → L2(Td)

as an operator

F−1
N :

{
L2(Td; [−R,R]2KN) → L2(Td),

{Re(v̂k), Im(v̂k)}|k|≤N 7→ v(x),
(5.10)

where the input {Re(v̂k), Im(v̂k)}|k|≤N ∈ [−R,R]2KN corresponds to a constant function in
L2(Td; [−R,R]2KN). For non-constant inputs v(x), we define the mapping (5.10) by applying
F−1

N to the constant function x 7→
ffl
Td v(ξ) dξ. By Lemma 5.5, this mapping can be approximated to

arbitrary precision by an FNO NIFT : L2(Td;R2KN) → L2(Td) satisfying

∥NIFT(v̂)−F−1
N (v̂)∥L2 ≤ ϵ/3, (5.11)

for all constant input functions v̂ ∈ L2(Td; [−R,R]2KN).

FNO approximation of ĜN : We treat the Fourier conjugate operator ĜN from (5.4) as a continuous
mapping

ĜN : [−RK̂ , RK̂]2KN ⊂ R2KN → R2KN .

Since [−RK̂ , RK̂]2KN is compact, there exists a finite-dimensional standard neural network N̂ :

R2KN → R2KN such that

sup
v̂∈[−R

K̂
,R

K̂
]2KN

∥ĜN (v̂)− N̂ (v̂)∥ℓ2 ≤ ϵ/3. (5.12)

Moreover, by (5.9), we have

ĜN

(
[−RK̂ , RK̂]2KN

)
⊂
[
−
RĜ
2
,
RĜ
2

]2KN

.

By selecting a neural network approximation N̂ with sufficient accuracy, we can additionally ensure
that

N̂
(
[−RK̂ , RK̂]2KN

)
⊂
[
−RĜ , RĜ

]2KN
,

alongside condition (5.12). We observe that for v ∈ L2(Td;R2KN), the corresponding mapping

N̂ : L2(Td;R2KN) → L2(Td;R2KN), v(x) 7→ N̂ (v(x)),

constitutes an FNO containing only local layers of the form

vℓ(x) 7→ σ (Aℓvℓ(x) + bℓ) , (Aℓ ∈ Rdv×dv , bℓ ∈ Rdv),

where dv := 2|KN |, corresponding to an FNO with all Pℓ ≡ 0 (see Remark 4.1). We therefore
identify N̂ with this specific FNO in what follows.

FNO approximation of FN ◦ PN : Finally, we interpret

FN ◦ PN : BRK
(0) ⊂ L2(Td) → R2KN

as a mapping

FN ◦ PN :

{
BRK

(0) → L2(Td;R2KN),

v 7→ {Re(v̂k), Im(v̂k)}|k|≤N ,
(5.13)

where the output {Re(v̂k), Im(v̂k)}|k|≤N ∈ R2KN represents a constant function in L2(Td;R2KN).
According to Lemma 5.4, this mapping can be approximated to arbitrary precision by an FNO
NFT : BRK

(0) → L2(Td;R2KN) (producing constant output functions). Specifically, denoting
Lip(N̂) as the Lipschitz constant of the FNO constructed in the previous step, we can ensure that

Lip(N̂) ∥FNPNv −NFT(v)∥ℓ2 ≤ ϵ/3, ∀ v ∈ BRK
(0), (5.14)

8

and since (5.9) gives us

FN ◦ PN (BRK
(0)) ⊂

[
−
RK̂

2
,
RK̂

2

]2KN

,

we can additionally guarantee that

NFT (BRK
(0)) ⊂

[
−RK̂ , RK̂

]2KN
.

Error analysis for the composite FNO: We now define the composite FNO N (a) := NIFT ◦ N̂ ◦
NFT(a), where each component has been constructed above. We observe that

sup
K

∥GN −N∥L2

≤ sup
BRK

(0)

∥∥∥F−1
N ◦ ĜN ◦ FN ◦ PN −NIFT ◦ N̂ ◦ NFT

∥∥∥
L2

≤ sup
BRK

(0)

∥∥∥F−1
N ◦ ĜN ◦ FN ◦ PN −F−1

N ◦ N̂ ◦ NFT

∥∥∥
L2

+ sup
BRK

(0)

∥∥∥F−1
N ◦ N̂ ◦ NFT −NIFT ◦ N̂ ◦ NFT

∥∥∥
L2

≤ sup
BRK

(0)

∥∥∥ĜN ◦ FN ◦ PN − N̂ ◦ NFT

∥∥∥
L2

+ sup
N̂(NFT(BRK

(0)))

∥∥F−1
N −NIFT

∥∥
L2

=: (I) + (II).

For term (II), we note that

N̂ (NFT (BRK
(0))) ⊂ N̂

(
[−RK̂ , RK̂]2KN

)
⊂
[
−RĜ , RĜ

]2KN
,

which, combined with (5.11), yields:

(II) ≤ sup
[−RĜ ,RĜ]

2KN

∥∥F−1
N −NIFT

∥∥
L2 ≤ ϵ/3.

To bound term (I), we decompose it as:

(I) = sup
BRK

(0)

∥∥∥ĜN ◦ FN ◦ PN − N̂ ◦ NFT

∥∥∥
L2

≤ sup
BRK

(0)

∥∥∥ĜN ◦ FN ◦ PN − N̂ ◦ FN ◦ PN

∥∥∥
L2

+ sup
BRK

(0)

∥∥∥N̂ ◦ FN ◦ PN − N̂ ◦ NFT

∥∥∥
L2

=: (Ia) + (Ib).

For subterm (Ia), we observe that

FN (PN (BRK
(0))) ⊂

[
−RK̂ , RK̂

]2KN
,

leading to
(Ia) ≤ sup

[−R
K̂
,R

K̂]
2KN

∥∥∥ĜN − N̂
∥∥∥
L2

≤ ϵ/3,

by virtue of (5.12). For subterm (Ib), we have:

(Ib) ≤ Lip(N̂) sup
BRK

(0)

∥FN ◦ PN −NFT∥L2 ≤ ϵ/3,

9

H K

ℓ2(I) ℓ2(K)

U

T †
Ψ

u

TΦ

(a) An alias-free operator’s
diagram commutes.

H K

ℓ2(I) ℓ2(K)

U

T †
Φ

TΨ

u

(b) ReNO: an alias-free u can be
constructed by discretizing the op-
erator U for different discretiza-
tions given by Ψ,Φ.

ℓ2(I) ℓ2(K)

H K

ℓ2(I ′) ℓ2(K ′)

u(Ψ,Φ)

TΦ
T †
Ψ

U

T †
Φ′u(Ψ′,Φ′)

TΨ′

(c) ReNO: discrete representations u, u′

for different discretizations are equiva-
lent.

Figure 2: An alias-free framework is presented, where U represents the continuous operator and u
its discrete counterpart. Synthesis operators, along with their pseudo-inverses, serve as the critical
link, enabling transformation between the continuous function space and the discrete space used for
computation.

following from (5.14).

Combining all estimates, we conclude:
sup
a∈K

∥GN (a)−N (a)∥L2 ≤ ϵ.

This demonstrates that the continuous operator GN can be approximated by an FNO N to any pre-
scribed accuracy ϵ > 0. Together with (5.2), this completes our proof of the universal approximation
theorem 5.2 for the special case s′ = 0. The general case with s′ ≥ 0 follows directly from Lemma
5.3.

6 Aliasing Errors in FNOs

FNOs possess universal approximation capabilities. However, in practice, evaluating the Fourier
transform is impossible since it requires computing an integral exactly. Instead, in actual computations,
we should compute discrete Fourier Transform between layers of the FNO instead. This introduces a
critical challenge: aliasing error may lead to reduced accuracy in high-precision regimes [Fanaskov
and Oseledets, 2023, Bartolucci et al., 2023], impeding the performance of FNOs. In this section, we
analyze the aliasing errors within the FNO layers by theoretical analysis and empirical analysis.

6.1 Theoretical Analysis

6.1.1 Representation equivalent Neural Operators (ReNO)

Bartolucci et al. [2023] introduces an important concept: Representation equivalent Neural Operator
(ReNO). That is, given any pair (Ψ,Φ) of frame sequences corresponding to H and K, we define
a discrete-level mapping u(Ψ,Φ): RanT †

Ψ → RanT †
Φ, which operates on discrete function repre-

sentations. Note that this mapping is parameterized by the frame sequences, which is natural since
changing the discretization necessitates modifying the function definition accordingly. For notational
simplicity, when the context is clear, we will denote u(Ψ,Φ) simply as u.

Definition 6.1. Representation equivalent Neural Operators (ReNO). A pair (U, u) constitutes a
ReNO when, for every frame sequence pair (Ψ,Φ) satisfying DomU ⊆ MΨ and RanU ⊆ MΦ,
the absence of aliasing occurs, meaning that the aliasing error operator equals zero:

ε(U, u,Ψ,Φ) = 0. (6.1)
This property is abbreviated as ε(U, u) = 0.

Put differently, the diagram shown in Figure 2a commutes for every applicable pair (Ψ,Φ). Under
these circumstances, all discrete representations u(Ψ,Φ) are equivalent, signifying that they uniquely
characterize the identical underlying operator U , provided that a continuous-discrete equivalence
property is satisfied at the function space level. The domain and range requirements in Definition 6.1
ensure that the frames can sufficiently represent the input and output functions of U .

10

Remark 6.2. When the aliasing error ε(U, u,Ψ,Φ) vanishes (as mandated by Definition 6.1), the
requirement that u(Ψ,Φ) maps RanT †

Ψ ⊆ ℓ2(I) into RanT †
Φ ⊆ ℓ2(K) leads to

u(Ψ,Φ) = T †
Φ ◦ U ◦ TΨ. (6.2)

We note that this formulation of u(Ψ,Φ) ensures that the diagram in Figure 2b commutes. Specifically,
after establishing the discrete representations Ψ,Φ for input and output functions, there exists a unique
method for defining a discretization u(Ψ,Φ) that remains consistent with the continuous operator U ,
given by (6.2). In practical applications, we may encounter various discrete representations of input
and output functions, which theoretically corresponds to changing reference frames in the function
spaces.

It is crucial to note that to eliminate any aliasing error, the discrete representation of U must depend
on the selected frame sequences. Therefore, u necessarily depends on Ψ and Φ, making it inherently
discretization-dependent. The proof of Remark 6.2 is provided in B.4.

Specifically, Remark 6.2 directly provides a formula for transforming from one discrete representation
to another:

u(Ψ′,Φ′) = T †
Φ′ ◦ TΦ ◦ u(Ψ,Φ) ◦ T †

Ψ ◦ TΨ′ , (6.3)

provided that both frame sequence pairs (Ψ,Φ) and (Ψ′,Φ′) satisfy the conditions specified in
Definition 6.1. Consequently, the diagram in 2c commutes.

Formula (6.3) directly establishes Proposition 6.3, which creates a connection between aliasing and
representation equivalence. This demonstrates the distinction from discretization invariance, exten-
sively discussed in Kovachki et al. [2023]: whereas that concept establishes asymptotic consistency,
representation equivalence enables direct comparison between any two specified discretizations and
ensures their equivalence.

Proposition 6.3. Equivalence of ReNO discrete representations. Consider (U, u) as a ReNO. For
any two frame sequence pairs (Ψ,Φ) and (Ψ′,Φ′) that satisfy the conditions in Definition 6.1, we
obtain

τ(u, u′) = 0,

where u′ represents u(Ψ′,Φ′) by slight notational abuse.

Therefore, assuming that the discrete mapping at each discretization level is consistent with the
underlying continuous operator, we obtain a unique method for expressing the operator at every
discretization. Additionally, formula (6.3) bears close resemblance to similar formulas presented in
Kovachki et al. [2023], Li et al. [2021] when evaluating single shot super resolution.

6.1.2 Fourier layer in FNOs

Our focus here is on the Fourier layer of FNOs, specifically

Kv = F−1(R⊙F)(v), (6.4)

where F ,F−1 represent the Fourier transform and its inverse, and R denotes a low-pass filter.
In Kovachki et al. [2023], the authors define the Fourier layer on the space L2(T) of 2-periodic
functions and, with minor notational liberties, they refer to the mappings F : L2(T) → ℓ2(Z) and
F−1 : ℓ2(Z) → L2(T),

Fw(k) = ⟨w, eiπkx⟩, F−1({Wk}k∈Z) =
∑
k∈Z

Wke
iπkx,

as the Fourier transform and inverse Fourier transform. Furthermore, the authors define the discrete
version of (6.4) as F−1(R⊙ F), where F, F−1 denote the discrete Fourier transform (DFT) and its
inverse, assuming access only to pointwise function evaluations. However, the space of 2-periodic
functions is too extensive to permit any form of continuous-discrete equivalence (CDE) when input v
and output Kv are represented through point samples. Therefore, we consider smaller subspaces of
L2(T) that enable CDEs. Specifically, we demonstrate that FNO Fourier layers can be implemented as

11

Representation equivalent Operators (cf. Definition 6.1) between bandlimited and periodic functions.
Let K > 0 and define PK as the space of bandlimited 2-periodic functions

PK =

{
w(x) =

K∑
k=−K

Wke
iπkx : {Wk}Kk=−K ∈ C2K+1

}
.

Every function w ∈ PK can be uniquely represented by its Fourier coefficients {Wk}Kk=−K and by
its samples {w(k

2K+1)}
K
k=−K , as shown in Vetterli et al. [2014]. The latter are coefficients of w with

respect to the orthonormal basis

ΨK =

{
1√

2(2K + 1)
d

(
· − 2k

2K + 1

)}2K

k=0

, (6.5)

where d denotes the Dirichlet kernel of order K and period 2, defined as

d(t) =

K∑
k=−K

eiπkt.

Moreover, the DFT {Ŵk}Kk=−K of the sample sequence {w(k
2K+1)}

K
k=−K relates to the Fourier

coefficients of w through

Ŵk = (2K + 1)Wk, k = −K, . . . ,K,

with proof provided in Vetterli et al. [2014]. This yields the commutative diagram

PK C2K+1,

C2K+1 C2K+1

F

T †
ΨK

(2K+1)·F

Id

where T †
ΨK

: PK → C2K+1 represents the analysis operator associated with basis (6.5). Similarly,
we construct the commutative diagram

C2K′+1 PK′

C2K′+1 C2K′+1

Id

F−1

1
(2K′+1)

·F-1

TΨ
K′

where TΨK′ : C2K′+1 → PK′ represents the synthesis operator associated with basis (6.5) with
K = K ′.

Here, R = {Rk}K
′

k=−K′ , with K ′ ≤ K, denotes the Fourier coefficients of a 2-periodic function, and
the mapping R⊙F : PK → C2K′+1 is defined as

(R⊙Fw)(k) = RkWk, k = −K ′, . . . ,K ′.

By definition, R⊙F provides a continuous-discrete equivalence operation. Overall, we obtain the
commutative diagram

PK C2K+1 C2K′+1 PK′

C2K+1 C2K+1 C2K′+1 C2K′+1

F

T †
ΨK

R⊙ F−1

(2K+1)·F

Id

R⊙

Id

1
(2K′+1)

·F-1

TΨ
K′

demonstrating that the discretization of Fourier layer 6.4, the blue path in the commutative diagram
above, is defined through Equation (6.2). Consequently, Fourier layer 6.4, considered as an operator
from PK to PK′ , satisfies the requirements of a Representation equivalent Operator (cf. Defini-
tion 6.1). However, pointwise activation functions applied to bandlimited inputs will not necessarily

12

preserve bandwidth. In fact, with common activation functions like ReLU, σ(f) /∈ PK for any
K ∈ N. Therefore, the FNO layer

σ(Kv) = σ(F−1(R⊙F)(v))

may not respect continuous-discrete equivalence and can introduce aliasing errors, a fact previously
identified in Fanaskov and Oseledets [2023]. Hence, FNOs may not qualify as ReNOs in the sense of
Definition 6.1.

6.2 Empirical Analysis

We analyze the impact of activation functions using empirical analysis. Specifically, we consider
a function f belonging to the space PK , where K = 20, assuming f to be both periodic and
bandlimited. The uppermost plot in Figure 3 visualizes the values of f , alongside its transformations
via the ReLU (ReLU(f)), GELU (GeLU(f)), Sigmoid (sigmoid(f)), and Tanh (tanh(f)) activation
functions. Given that f ’s Fourier coefficients vanish beyond the Nyquist frequency K, sampling f
at 2K + 1 points on a grid is sufficient for its complete characterization. However, the lower plot
demonstrates that this condition no longer holds for ReLU(f), GeLU(f), sigmoid(f), and tanh(f).
Consequently, the discrete representation on the grid fails to uniquely represent the continuous
functions, leading to aliasing artifacts.

3 2 1 0 1 2 3

2

1

0

1

2

Am
pl

itu
de

Time Domain
f (band-limited)
ReLU(f)
GELU(f)
sigmoid(f)
tanh(f)

60 40 20 0 20 40 60
Fourier mode k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ag

ni
tu

de

Frequency Domain
|F|
|ReLU(F)|
|GELU(F)|
|sigmoid(F)|
|tanh(F)|
Nyquist ±K

Figure 3: The application of the activation function broadens the bandwidth of the input function
beyond the Nyquist frequency, resulting in aliasing errors.

7 Spectral Neural Operator

To eliminate this aliasing issue within the FNO layers, the Spectral Neural Operator (SNO) [Fanaskov
and Oseledets, 2023] works directly in coefficient space. Given an input function a(x), we first
compute its truncated spectral coefficients

d = (dk)|k|≤K , a(x) ≈
∑

|k|≤K

dk ϕk(x).

13

We then seek a finite-dimensional map

d
Nθ−−−→ b, b = (bℓ)|ℓ|≤L,

so that the output function u(x) =
∑
|ℓ|≤L

bℓ ϕℓ(x) approximates the true solution F∗(a). In practice

we stack the coefficient vector d into a tall matrix U ∈ C(2K+1)×dv when multiple feature channels
(multiple functions) dv are used, and implements Nθ in three neural-network stages:

U
N1−−→ V

N2−−→ Y
N3−−→ W,

where N1 and N3 are pointwise (channel-wise) linear layers with nonlinear activations, altering only
the number of feature channels, that is:

U (n+1) = σ
(
U (n)A+ b

)
∈ Ck×m

U (n) ∈ Ck×l, A ∈ Cl×m, b ∈ C1×m,
(7.1)

where σ is a pointwise activation.

Meanwhile, N2 introduces global mixing by a learned low-rank operator B (corresponding to low-
rank integral operator) acting along the coefficient dimension. It is stacked from the following
layers:

U (n+1) = σ
(
BU (n)A+ b

)
∈ Cr×m

B ∈ Cr×k, U (n) ∈ Ck×l, A ∈ Cl×m, b ∈ Cr×m.
(7.2)

Finally, the resulting matrix W ∈ C(2L+1)×du provides the output coefficients for each solution
channel, and application of the inverse FFT or DCT reconstructs u(x) at arbitrary points.

By learning entirely in the truncated coefficient domain, SNOs avoid the aliasing errors that plague
pointwise nonlinearities in Fourier layers, as shown theoretically in Appendix B.5. Moreover, because
spectral coefficients are explicit, we obtain immediate access to spectral decay rates, Sobolev-norm
estimates, and derivative bounds. The per-layer complexity is O(N logN +N d2v). SNOs also enjoy
mesh invariance: once the coefficient map Nθ is trained, evaluation on any grid or set of points in D
requires only coefficient reconstruction via the basis functions {ϕk}, without retraining.

8 Numerical Experiments

In this section, we empirically evaluate the performance of the Spectral Neural Operator (SNO)
against the widely-used Fourier Neural Operator (FNO) baseline. We conduct experiments on three
benchmark problems governed by canonical partial differential equations: the viscous Burgers’
equation [Burgers, 1948], the Korteweg-de Vries (KdV) equation [Korteweg and De Vries, 1895],
and the Kuramoto-Sivashinsky (KS) equation [Kuramoto, 1978, Ashinsky, 1988]. We compare FNO
with two variants of SNO: one employing a Fourier basis [baron de Fourier, 1822] (SNO-Fourier)
and another using a Chebyshev basis [Mason and Handscomb, 2002] (SNO-Chebyshev).

8.1 Governing Equations

Due to the computational resource constraint, we only use 1D data for both neural operators here. We
focus on learning the solution operator for three 1D time-dependent PDEs, each exhibiting distinct
physical behaviors. The task is to learn the mapping from an initial condition u(x, 0) to the solution
at a future time T , i.e., G : u(x, 0) 7→ u(x, T). All problems are considered on a periodic domain
x ∈ [0, 2π].

1. Viscous Burgers’ Equation: This equation is a fundamental model for convection-diffusion
phenomena, combining a nonlinear convection term and a linear diffusion term. It is given
by:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(8.1)

where ν is the viscosity coefficient. For our experiments, we set ν = 0.01. This equation
models the formation of shock waves balanced by viscous dissipation.

14

2. Korteweg-de Vries (KdV) Equation: The KdV equation models weakly non-linear, long-
wave propagation in dispersive media, famously describing shallow water waves. It is known
for its stable, localized soliton solutions. The equation is:

∂u

∂t
+ 6u

∂u

∂x
+
∂3u

∂x3
= 0 (8.2)

The third-order derivative term introduces dispersion, which counteracts the wave-steepening
effect of the nonlinear term.

3. Kuramoto-Sivashinsky (KS) Equation: The KS equation is a model for instabilities and
spatio-temporal chaos in various physical systems, such as flame fronts and thin film flows.
It is defined as:

∂u

∂t
+ u

∂u

∂x
+
∂2u

∂x2
+
∂4u

∂x4
= 0 (8.3)

The equation features a second-order anti-diffusion term (+∂2u/∂x2) that introduces insta-
bility, which is regularized by the fourth-order hyper-diffusion term (+∂4u/∂x4).

8.2 Data Generation

We summarize the key aspects of the data generation pipeline below.

Numerical Solver To ensure accuracy and stability, we employ a second-order Implicit-Explicit
Runge-Kutta (IMEX-RK2) scheme [Ascher et al., 1997]. This method is well-suited for the target
PDEs as it treats the stiff linear terms (e.g., diffusion, dispersion) implicitly in Fourier space while
handling the non-linear advection term explicitly. The spatial domain [0, 2π] is discretized with
Nx = 256 grid points. The solution operator is learned for a fixed future time of T = 0.1, with a fine
time step of ∆t = 10−5 used in the solver to guarantee a high-fidelity ground truth.

Initial Conditions For each PDE, we generate a diverse set of random initial conditions to ensure
the learned operator generalizes well.

• For the Burgers’ equation, initial conditions are a mix of random Gaussian pulses and
superpositions of low-frequency sinusoids.

• For the KdV equation, initial conditions are composed of single and multiple soliton-like
profiles (using sech2 functions) with varying amplitudes and positions.

• For the KS equation, initial conditions are generated as a sum of several sinusoids with
random phases and amplitudes, plus a small amount of white noise to effectively trigger its
chaotic dynamics.

For each equation, we generate a dataset containing 2, 000 samples for training and 1, 000 samples
for testing.

8.3 Implementation Details

All models are implemented in PyTorch [Paszke, 2019] and trained on a single A100 GPU. The
goal is to ensure a fair comparison by keeping the number of trainable parameters and the training
procedure consistent across all models.

Model Hyperparameters We carefully selected hyperparameters for FNO and SNO to have a
comparable number of trainable parameters (approximately 209k for both).

• FNO: The architecture consists of a lifting layer, 3 Fourier layers, and a projection layer.
The key hyperparameters are a feature width of width=64 and modes=16 Fourier modes
kept in each layer.

• SNO (Fourier & Chebyshev): The SNO architecture consists of a lifting network, 3 spectral
mixing layers, and a projection network. The hyperparameters are set to n_coeffs=64 (num-
ber of input spectral coefficients), lifting_features=64, and integral_neurons=256.
For SNO-Chebyshev, inputs are transformed to the spectral domain using the Discrete Co-
sine Transform (DCT) [Ahmed et al., 2006], while SNO-Fourier uses the Real Fast Fourier
Transform (RFFT) [Sorensen et al., 2003].

15

Training and Evaluation The training setup is identical for all experiments. We use the AdamW
optimizer [Loshchilov and Hutter, 2017] with a learning rate of η = 0.001 and a weight decay of
10−5. A cosine annealing learning rate scheduler [Loshchilov and Hutter, 2016] is employed over
the entire training duration. The models are trained by minimizing the relative L2 error, defined
as L(u, û) = ∥u−û∥L2

∥u∥L2
, where u is the ground truth and û is the model prediction. All models are

trained for a total of 20, 000 epochs with a batch size of 2, 000.

8.4 Results

We report the final test performance of all models across the three PDE benchmarks. The evaluation
metric is the average relative L2 error on the test set. The results, along with the number of trainable
parameters for each model, are summarized in Table 1. The result shows that FNO generally performs
better on 1D settings.

Table 1: Comparison of test set relative L2 error for FNO, SNO-Fourier, and SNO-Chebyshev
across three different PDE benchmarks. The number of trainable parameters for each model is kept
approximately equal for a fair comparison.

Model Parameters Burgers KdV KS
FNO ≈ 209.2k 4.47× 10−4 3.33× 10−3 7.55× 10−4

SNO-Fourier ≈ 209.1k 1.30× 10−2 7.49× 10−3 2.08× 10−3

SNO-Chebyshev ≈ 209.1k 8.33× 10−3 6.64× 10−3 4.60× 10−3

9 Conclusion

This work presented a comparative study of Fourier Neural Operators (FNOs) and Spectral Neural Op-
erators (SNOs). We illustrated the architecture of FNO and SNO, and conducted theoretical analysis
and numerical experiments for both neural operators. This work provides guidance for practitioners
on selecting the appropriate neural operator architecture for different application contexts.

Acknowledgment

I would like to express my sincere gratitude to Professor Lei Zhang. His course on numerical solutions
was immensely beneficial, not only equipping me with a wealth of knowledge but also fostering a
deep interest in this field of research. I am also very thankful for his thorough and insightful guidance
on this course project, from advising on the suitability of the topic to recommending essential reading
materials. I am truly grateful for his mentorship and support.

References
Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error

bounds for fourier neural operators. Journal of Machine Learning Research, 22(290):1–76, 2021.

Anima Anandkumar, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Nikola Kovachki, Zongyi Li,
Burigede Liu, and Andrew Stuart. Neural operator: Graph kernel network for partial differential
equations. In ICLR 2020 workshop on integration of deep neural models and differential equations,
2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. Advances in Neural Information Processing Systems, 33:6755–6766, 2020.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=c8P9NQVtmnO.

16

https://openreview.net/forum?id=c8P9NQVtmnO

Vladimir Sergeevich Fanaskov and Ivan V Oseledets. Spectral neural operators. In Doklady
Mathematics, volume 108, pages S226–S232. Springer, 2023.

Francesca Bartolucci, Emmanuel de Bézenac, Bogdan Raonic, Roberto Molinaro, Siddhartha Mishra,
and Rima Alaifari. Are neural operators really neural operators? frame theory meets operator
learning. arXiv preprint arXiv:2305.19913, 2023.

Christian Grossmann. Numerical treatment of partial differential equations. Springer, 2007.

Philippe G Ciarlet. The finite element method for elliptic problems. SIAM, 2002.

Susanne C Brenner. The mathematical theory of finite element methods. Springer, 2008.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer.
Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy
of Sciences, 118(21):e2101784118, 2021.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 481–490, 2016.

Jonas Adler and Ozan Öktem. Solving ill-posed inverse problems using iterative deep neural networks.
Inverse Problems, 33(12):124007, 2017.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
64:525–545, 2019.

Leah Bar and Nir Sochen. Unsupervised deep learning algorithm for pde-based forward and inverse
problems. arXiv preprint arXiv:1904.05417, 2019.

Shaowu Pan and Karthik Duraisamy. Physics-informed probabilistic learning of linear embeddings
of nonlinear dynamics with guaranteed stability. SIAM Journal on Applied Dynamical Systems, 19
(1):480–509, 2020.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297–301, 1965.

Levi E. Lingsch, Mike Yan Michelis, Emmanuel de Bezenac, Sirani M. Perera, Robert K.
Katzschmann, and Siddhartha Mishra. Beyond regular grids: Fourier-based neural operators
on arbitrary domains. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=aVqqoFAavs.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Martin Vetterli, Jelena Kovačević, and Vivek K Goyal. Foundations of signal processing. Cambridge
University Press, 2014.

Johannes Martinus Burgers. A mathematical model illustrating the theory of turbulence. Advances in
applied mechanics, 1:171–199, 1948.

Diederik Johannes Korteweg and Gustav De Vries. Xli. on the change of form of long waves
advancing in a rectangular canal, and on a new type of long stationary waves. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(240):422–443, 1895.

Yoshiki Kuramoto. Diffusion-induced chaos in reaction systems. Progress of Theoretical Physics
Supplement, 64:346–367, 1978.

17

https://openreview.net/forum?id=aVqqoFAavs

Gi Siv Ashinsky. Nonlinear analysis of hydrodynamic instability in laminar flames—i. derivation of
basic equations. In Dynamics of Curved Fronts, pages 459–488. Elsevier, 1988.

Jean Baptiste Joseph baron de Fourier. Théorie analytique de la chaleur. Firmin Didot, 1822.

John C Mason and David C Handscomb. Chebyshev polynomials. Chapman and Hall/CRC, 2002.

Uri M Ascher, Steven J Ruuth, and Raymond J Spiteri. Implicit-explicit runge-kutta methods for
time-dependent partial differential equations. Applied Numerical Mathematics, 25(2-3):151–167,
1997.

A Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

Nasir Ahmed, T_ Natarajan, and Kamisetty R Rao. Discrete cosine transform. IEEE transactions on
Computers, 100(1):90–93, 2006.

H V Sorensen, D Jones, Michael Heideman, and C Burrus. Real-valued fast fourier transform
algorithms. IEEE Transactions on acoustics, speech, and signal processing, 35(6):849–863, 2003.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

18

Appendix Contents

A Notation 19

B Detailed Proofs and Technical Results for Section 5 20

B.1 Proof of Lemma 5.3 . 20

B.2 Proof of Lemma 5.4 . 22

B.3 Proof of Lemma 5.5 . 24

B.4 Proof of Remark 6.2 . 25

B.5 SNOs are aliasing-free . 25

A Notation

In this section, we introduce frequently used notation in the main text and recall some essential facts
about Fourier analysis.

In the main text, our focus is on functions defined on the periodic torus Td, identified as Td = [0, 2π]d.
Following standard practice, we denote by L2(Td) the space of square-integrable functions. For any
such function v ∈ L2(Td), we define the Fourier Transform as,

F(v)(k) :=
1

(2π)d

ˆ
Td

v(x)e−i⟨k,x⟩ dx, ∀ k ∈ Zd. (A.1)

For any k ∈ Zd, the k-th Fourier coefficient of v is denoted by v̂k = F(v)(k).

Given a set of Fourier coefficients {v̂k}k∈Zd , the inverse Fourier Transform is defined as,

F−1(v̂)(x) :=
∑
k∈Zd

v̂ke
i⟨k,x⟩, ∀x ∈ Td. (A.2)

Using the Fourier transform (A.1) and for s ≥ 0, we denote byHs(Td) the Sobolev space of functions
v ∈ L2(Td), with Fourier coefficients {v̂k}k∈Zd , having a finite Hs-norm:

∥v∥2Hs :=
(2π)d

2

∑
k∈Zd

(1 + |k|2s)|v̂k|2 <∞. (A.3)

Note that with this definition, we have from Parseval’s identity, that ∥v∥H0 = ∥v∥L2 , so that
H0(Td) = L2(Td).

We also introduce the corresponding homogeneous Sobolev spaces Ḣs(Td) (and L̇2(Td) := Ḣ0(Td)),
consisting of functions v(x) ∈ Hs(Td) with zero mean

ffl
Td v(x) dx = v̂0 = 0, and with norm

∥v∥Ḣs :=

(2π)d
∑

k∈Zd\{0}

|k|2s|v̂k|2
1/2

. (A.4)

Given N ∈ N, throughout this work, we will denote by L2
N (Td) the space of trigonometric polyno-

mials vN : Td → R, of the form

vN (x) =
∑

|k|∞≤N

cke
i⟨x,k⟩, (A.5)

where the summation is over all k = (k1, . . . , kd) ∈ Zd such that

|k|∞ := max
i=1,...,d

|ki| ≤ N.

19

The space L2
N (Td) is viewed as a normed vector space with norm ∥ · ∥L2 . Similarly, for s ≥ 0, we

denote by Hs
N (Td) the normed vector space of trigonometric polynomials vN of degree ≤ N , with

norm ∥ · ∥Hs .

We note that in order to ensure that vN (x) ∈ R is real-valued for all x ∈ Td, the coefficients ck ∈ C
must satisfy the relations c−k = ck for all |k|∞ ≤ N , and where ck denotes the complex conjugate
of ck.

We denote by

PN : L2(Td) → L2
N (Td), v 7→ PNv, (A.6)

the L2-orthogonal projection onto L2
N (Td); or more explicitly,

PN

∑
k∈Zd

cke
i⟨k,x⟩

 =
∑

|k|∞≤N

cke
i⟨k,x⟩, ∀ (ck)k∈Zd ∈ ℓ2(Zd).

In fact, the mapping PN defines a projection Hs(Td) → Hs
N (Td) for any s ≥ 0. We have the

following spectral approximation estimate: Let s > 0 be given. There exists a constant C =
C(s, d) > 0, such that for any v ∈ Hs(Td), we have

∥v − PNv∥Hς ≤ CN−(s−ς)∥v∥Hs , for any ς ∈ [0, s]. (A.7)

We also define a natural projection

ṖN : L2(Td) → L̇2
N (Td), (A.8)

by removing the mean, i.e. ṖNv = PNv −
ffl
Td v(x) dx, or equivalently:

ṖN

∑
k∈Zd

cke
i⟨k,x⟩

 =
∑

0<|k|∞≤N

cke
i⟨k,x⟩, ∀ (ck)k∈Zd ∈ ℓ2(Zd).

Recall the set of Fourier wave numbers (5.3) and we define the discrete Fourier transform FN :
RJN → CKN by

FN (v)(k) :=
1

(2N + 1)d

∑
j∈JN

vje
−2πi⟨j,k⟩/N , (A.9)

with inverse F−1
N : CKN → RJN ,

F−1
N (v̂)(j) :=

∑
k∈KN

v̂ke
2πi⟨j,k⟩/N . (A.10)

B Detailed Proofs and Technical Results for Section 5

B.1 Proof of Lemma 5.3

The demonstration of Lemma 5.3 requires the following auxiliary technical result:

Lemma B.1. Let s′ ≥ 0 and N ∈ N be given parameters. Consider a compact set K ⊂ Hs′

and assume that the activation function satisfies σ ∈ Cm for some integer m > s′. Then for any
prescribed tolerance ϵ > 0, there exists a single-layer FNO L : Hs′ → Hs′ such that

sup
v∈K

∥PNv − L(v)∥Hs′ ≤ ϵ.

Proof of Lemma B.1. We begin by noting that the Fourier projection operator PN : Hs′ → Hs′ is
continuous, which implies that the image set PNK ⊂ Hs′ is compact. Moreover, PN maps into a

20

finite-dimensional subspace of Hs′ . Due to the equivalence of norms on finite-dimensional spaces,
there exists a constant C0 = C0(N,K) > 0 such that

sup
v∈K

∥PNv∥L∞ ≤ C0, sup
v∈K

∥PNv∥Hm ≤ C0. (B.1)

Let x0 ∈ R be chosen such that σ′(x0) ̸= 0. For any parameter h > 0, we define the function

ψh(x) :=
σ(x0 + hx)− σ(x0 − hx)

2hσ′(x0)
. (B.2)

One can readily verify that ψh ∈ Cm, and there exists a constant C1 = C1(σ,C0) > 0 such that

∥ψh∥Cm([−C0,C0]) ≤ C1, ∀h ∈ (0, 1]. (B.3)

Furthermore, applying Taylor expansion yields

|ψh(x)− x| ≤ Ch, ∀x ∈ [−C0, C0], ∀h ∈ (0, 1]. (B.4)

By the composition rule for Sobolev functions, we have ψh ◦ PNa ∈ Hm whenever PNa ∈ Hm,
and there exists a constant C2 = C2(C1, C0) > 0 such that

∥ψh(PNv)∥Hm ≤ C2, ∀ v ∈ K. (B.5)

We observe that the mapping v 7→ Lh(v) := ψh(PNv) can be implemented as a single-layer FNO,
and by (B.5), we obtain

∥Lh(v)∥Hm ≤ C2, ∀ v ∈ K. (B.6)

Using the interpolation inequality between Sobolev spaces, we have

∥Lh(v)− PNv∥Hs′ ≤ ∥Lh(v)− PNv∥θL2∥Lh(v)− PNv∥1−θ
Hm ,

where θ = 1 − s′/m > 0. The second factor can be bounded independently of h > 0 using (B.6)
and (B.1). By (B.4) and (B.1), we obtain

∥Lh(v)− PNv∥L2 = ∥ψh(PNv)− PNv∥L2 ≤ Ch,

for some constant C > 0 independent of both h and v ∈ K. We conclude that

∥Lh(v)− PNv∥Hs′ ≤ Chθ → 0,

as h→ 0, for some constant C > 0 independent of h. This establishes the desired result.

We now proceed with the main proof:

Proof of Lemma 5.3. Let G : Hs → Hs′ be a continuous operator, and let K ⊂ Hs be a compact
set. We assume that FNOs provide universal approximation for operators of the form Hs → L2,
and we aim to demonstrate that for any tolerance ϵ > 0, there exists an FNO approximation of
G : Hs → Hs′ achieving accuracy ϵ.

We first observe that due to the compactness of G(K) ⊂ Hs′ , there exists N ∈ N such that

sup
a∈K

∥G(a)− PNG(a)∥Hs′ ≤ ϵ/2. (B.7)

Let δ > 0 be a parameter whose specific value will be determined at the conclusion of this proof. By
our assumption regarding the universal approximation property for operators Hs → L2, there exists
an FNO Ñ : Hs → L2, continuous as an operator Hs → L2, such that

sup
a∈K

∥PNG(a)− Ñ (a)∥L2 ≤ δ. (B.8)

One challenge in our construction is that there is no guarantee that Ñ defines a mapping Hs → Hs′ ;
indeed, for s′ > s, this is generally not the case. We address this issue by composing with an
additional FNO layer L̃ : L2 → Hs′ .

21

By Lemma B.1, there exists a single-layer FNO v 7→ L̃(v) satisfying the identity

L̃(v) = L̃(PNv), (B.9)

for all v, and defining a continuous operator Hs′ → Hs′ , such that

sup
v∈K′

∥PNv − L̃(v)∥Hs′ ≤ δ, (B.10)

where K ′ := PN Ñ (K) ⊂ Hs′ is a compact subset3 of Hs′ .

Next, we define a new FNO through composition N := L̃ ◦ Ñ : Hs → Hs′ . The operator N is
continuous from Hs to Hs′ , since it can be expressed as the composition

Hs Ñ−→ L2 PN−→ Hs′ L̃−→ Hs′ ,

of continuous operators.

We observe that for any a ∈ K, the following bound holds:

∥PNG(a)−N (a)∥Hs′ ≤ ∥PNG(a)− PN Ñ (a)∥Hs′ + ∥PN Ñ (a)−N (a)∥Hs′

≤ CNs′∥PNG(a)− Ñ (a)∥L2 + ∥PN Ñ (a)− L̃(PN Ñ (a))∥Hs′ ,

where we have utilized the inequality ∥PNv∥Hs′ ≤ CNs′∥PNv∥L2 for a constant C = C(Td, s′) >

0 independent of N , and the fact that N (a) = L̃(Ñ (a)) = L̃(PN Ñ (a)) (see (B.9)).

Using (B.8), we can estimate

CNs′∥PNG(a)− Ñ (a)∥L2 ≤ CNs′δ.

The bound (B.10) implies that ∥PN Ñ (a)− L̃(PN Ñ (a))∥Hs′ = ∥PNv − L̃(v)∥Hs′ ≤ δ by (B.10),
with v := PN Ñ (a) ∈ K ′. Thus we obtain

∥PNG(a)−N (a)∥Hs′ ≤ (CNs′ + 1)δ, (B.11)

where C = C(Td, s′) > 0 is independent of δ. Since δ > 0 is arbitrary, we can ensure that
(CNs′ + 1)δ ≤ ϵ/2.

From this estimate, combined with the bound (B.7), we conclude that there exists an FNO N : Hs →
Hs′ such that

sup
a∈K

∥G(a)−N (a)∥Hs′ ≤ sup
a∈K

∥G(a)− PNG(a)∥Hs′

+ sup
a∈K

∥PNG(a)−N (a)∥Hs′

≤ ϵ.

This completes our proof.

B.2 Proof of Lemma 5.4

Proof. Step 1: In this initial step, for any given tolerance ϵ > 0, we construct an FNO

N1 : L2(Td;R) → L2(Td;R2KN),

such that {∥N1(v)1,k − PNv(x) cos(⟨k, x⟩)∥L∞ < ϵ,

∥N1(v)2,k − PNv(x) sin(⟨k, x⟩)∥L∞ < ϵ,
∀ k ∈ KN . (B.12)

To construct such an operator N1, we first define a lifting mapping

R1 : L2(Td;R) → L2(Td;R4KN), v(x) 7→ ŵ(x),

3We note that Ñ (K) ⊂ L2 is compact as the continuous image of K, and that PN : L2 → Hs′ defines a
continuous mapping for fixed N ∈ N.

22

where ŵ(x) := {(v(x), 0, v(x), 0)}k∈KN
∈ R4KN for any x ∈ Td. In what follows, we identify

R4KN ≃ Rdv with dv = 4|KN |.
We then define the inner components of the first FNO layer (specifically the matrix W , multiplier
P , and bias b(x) in (4.2)) such that P (k) ≡ 1|k|≤N1dv×dv

either vanishes (for |k| > N) or equals
the identity matrix (for |k| ≤ N), W ≡ 0 is the zero matrix, and the bias function is b(x) :=
{(0, b2,k(x), 0, b4,k(x))}k∈KN

with b2,k(x) = cos(⟨k, x⟩) and b4,k(x) = sin(⟨k, x⟩), yielding

L̂1(v̂)(x) :=Wŵ(x) + b(x) + F−1(PFŵ)(x)
=
{(
PN ŵ1,k(x), cos(⟨k, x⟩), PN ŵ3,k(x), sin(⟨k, x⟩)

)}
k∈KN

.

Recall that by assumption, we have ∥v∥L2 ≤ B, and by construction, ŵ1,k(x) = ŵ3,k(x) = v(x),
which implies

∥PN ŵ1,k∥L∞ = ∥PN ŵ3,k∥L∞ = ∥PNv∥L∞ ≤ C∥PNv∥L2 ≤ CB,

where C = C(N) ∝ Nd/2 is a constant depending on N .

By the universal approximation theorem for standard neural networks, there exists a neural network

N̂ : [−CB,CB]× [−1, 1]× [−CB,CB]× [−1, 1] → R2

with activation function σ such that max(a,b,c,d) |N̂ (a, b, c, d)− (ab, cd)| < ϵ, where the maximum
is taken over all a, c ∈ [−CB,CB] and b, d ∈ [−1, 1].

Then the pointwise mapping

N1 = N̂ ◦ L̂1 ◦ R1 :

{
L2(Td;R) → L2(Td;R2KN),

v(x) 7→ w̃(x) := L̂1(R1(v))(x) 7→ N̂ (w̃(x)),

satisfies (B.12), and N1 can be represented as an FNO (see Remark 4.1).

Step 2: From the previous step, we have ∥N1(v)1,k−PNv(x) cos(⟨k, x⟩)∥L∞ < ϵ and ∥N1(v)2,k−
PNv(x) sin(⟨k, x⟩)∥L∞ < ϵ for all v ∈ L2(Td) with ∥v∥L2 ≤ B.

We observe that since

PNv(x) =
∑

|k|∞≤N

v̂ke
i⟨k,x⟩,

and since v(x) is real-valued, the Fourier coefficients v̂k satisfy v̂−k = v̂k, where v̂k denotes the
complex conjugate of v̂k, and

Td

PNv(x) cos(⟨k, x⟩) dx = Re(v̂k),

Td

PNv(x) sin(⟨k, x⟩) dx = −Im(v̂k).

In particular, this implies that the zeroth Fourier modes of PNv(x) cos(⟨k, x⟩) and
PNv(x) sin(⟨k, x⟩), respectively, are given by

F
[
PNv cos(⟨k, · ⟩)

]
(0) = Re(v̂k), F

[
PNv sin(⟨k, · ⟩)

]
(0) = −Im(v̂k).

Consequently, using the Fourier multiplier

δ0(k
′) =

{
1, (k′ = 0)

0, (k′ ̸= 0),
∀ k′ ∈ Zd,

and with w(x) := N1(v)(x) ∈ L2(Td;R2KN) written as w(x) = {(w1,k(x), w2,k(x))}k∈KN
, we

have ∥∥∥F−1
(
δ0(k

′)F(w1,k)(k
′)
)
(x)− Re(v̂k)

∥∥∥
L∞

< ϵ,∥∥∥F−1
(
δ0(k

′)F(w2,k)(k
′)
)
(x) + Im(v̂k)

∥∥∥
L∞

< ϵ,

23

for all v ∈ L2(Td) with ∥v∥L2 ≤ B.

We use this observation to define an appropriate FNO layer with local matrix W = 0, bias b(x) = 0,
and a Fourier multiplier matrix P : Zd → Cdv×dv , k′ 7→ P (k′) (where dv = 2|KN | and Cdv ≃
C2KN), with entries

[P (k′)](ℓ,k),(ℓ̃,k̃) := δ0(k
′) {δℓ=1(ℓ)− δℓ=2(ℓ)}1dv×dv

.

With this definition of the Fourier multiplier P , we define L̂2 : L2(Td;R2KN) → L2(Td;R2KN) by

L̂2(w) :=Ww(x) + b(x) + F−1
(
PFw

)
(x).

Then, by construction, for any v ∈ L2(Td) with ∥v∥L2 ≤ B, the output w := L̂2(N1(v)) with
w(x) = {(w1,k(x), w2,k(x))}k∈KN

satisfies{∥w1,k(x)− Re(v̂k)∥L∞ < ϵ,

∥w2,k(x)− Im(v̂k)∥L∞ < ϵ.

We also note that L̂2 outputs only constant functions by construction.

This is nearly the desired result, except that the composition L̂2 ◦ N1 does not define an FNO since
the linear layer L̂2 lacks the nonlinearity σ. This can be remedied by composition with an appropriate
standard σ-neural network Ñ that approximates the identity function.

Indeed, the last estimate implies that |wℓ,k| ≤ |v̂k| + ϵ ≤ B + ϵ for all ℓ and k. By the standard
universal approximation theorem, there exists a neural network Ñ : R2KN → R2KN such that

∥Ñ (w)− w∥ℓ∞ < ϵ, ∀w ∈ R2KN , ∥w∥ℓ∞ ≤ B + ϵ.

Then the composition N2 := Ñ ◦ L̂2 : L2(Td;R2KN) → L2(Td;R2KN), given by w(x) 7→
Ñ
(
L̂2(w)(x)

)
, does define an FNO.

Step 3: We finally observe that since both N1 and N2 can be represented as FNOs, their composition

N := N2 ◦ N1 : L2(Td) → L2(Td;R2KN)

can also be represented as an FNO with depth(N) = depth(N1) + depth(N2), width(N) =
maxj=1,2 width(Nj), and lift(N) = maxj=1,2 lift(Nj).

Furthermore, the mapping v 7→ N (v) produces constant functions, and for any v ∈ L2(Td) with
∥v∥L2 ≤ B, we have {∥Re(v̂k)−N (v)1,k∥L∞ < 2ϵ,

∥Im(v̂k)−N (v)2,k∥L∞ < 2ϵ.

Since ϵ > 0 was arbitrary, the claim follows.

B.3 Proof of Lemma 5.5

Proof. Step 1: We begin by constructing an FNO N1 : L2(Td;R2KN) → L2(Td;R2KN) such that
∥N1(w)1,k − PNw1,k(x) cos(⟨k, x⟩)∥L∞ <

(
2|KN ||Td|1/2

)−1

ϵ,

∥N1(w)2,k − PNw2,k(x) sin(⟨k, x⟩)∥L∞ <
(
2|KN ||Td|1/2

)−1

ϵ,

(B.13)

for all w(x) = (w1,k(x), w2,k(x)) such that ∥w1,k∥L∞ , ∥w2,k∥L∞ ≤ B for all k ∈ KN . Here
|Td| = (2π)d denotes the Lebesgue measure of Td and |KN | = (2N + 1)d represents the cardinality
of KN .

To construct such an operator N1, we first define a lifting R : L2(Td;R2KN) → L2(Td;R4KN)
given by {(w1,k(x), w2,k(x))}k∈KN

7→ {(w1,k(x), 0, w2,k(x), 0)}k∈KN
, followed by a linear layer

24

L : L2(Td;R4KN) → L2(Td;R4KN) that introduces only a bias term (setting W ≡ 0, b(x) =
{(0, cos(⟨k, x⟩), 0, sin(⟨k, x⟩))}k∈KN

, P ≡ 0), yielding
L ◦ R(w) = {(w1,k(x), cos(⟨k, x⟩), w2,k(x), sin(⟨k, x⟩))}k∈KN

for all w ∈ L2(Td;R2KN).

There exists a standard neural network N̂ : [−B,B] × [−1, 1] × [−B,B] × [−1, 1] → R2 such
that maxa,b,c,d |N̂ (a, b, c, d) − (ab, cd)| < (2|KN ||Td|1/2)−1ϵ, where the maximum is taken over
a, c ∈ [−B,B] and b, d ∈ [−1, 1]. Since by assumption we have ∥w1,k∥L∞ , ∥w2,k∥L∞ ≤ B for the
inputs of interest, we conclude that N1(w) := N̂ ◦ L ◦ R(w) satisfies (B.13).

Step 2: We define a projection operator Q (similar to the definition of neural operators (4.3)) that
maps w(x) ∈ L2(Td;R2KN) to a scalar-valued function:

Q : L2(Td;R2KN) → L2(Td), w(x) 7→
∑

k∈KN

(w1,k(x)− w2,k(x)) .

Then N := Q ◦ N1 : L2(Td;R2KN) → L2(Td) is an FNO, and for any v ∈ L2
N (Td) and w =

{(Re(v̂k), Im(v̂k))}k∈KN
defined as in the statement of this lemma, we have

∥v −N (w)∥L2 =

∥∥∥∥∥v − ∑
k∈KN

(
N1(w)1,k −N1(w)2,k

)∥∥∥∥∥
L2

≤
∑

k∈KN

∥N1(w)1,k − Re(v̂k) cos(⟨k, x⟩)∥L2

+
∑

k∈KN

∥N1(w)2,k − Im(v̂k) sin(⟨k, x⟩)∥L2

≤
∑

k∈KN

∥N1(w)1,k − Re(v̂k) cos(⟨k, x⟩)∥L∞ |Td|1/2

+
∑

k∈KN

∥N1(w)2,k − Im(v̂k) sin(⟨k, x⟩)∥L∞ |Td|1/2

≤ |KN ||Td|1/2 max
k∈KN

∥N1(w)1,k − w1,k cos(⟨k, x⟩)∥L∞

+ |KN ||Td|1/2 max
k∈KN

∥N1(w)2,k − w2,k sin(⟨k, x⟩)∥L∞

< ϵ.

B.4 Proof of Remark 6.2

We maintain the notation established in Section 3.2. Assuming the aliasing error ε(U, u,Ψ,Φ)
vanishes, we have the following relationship:

U = TΦ ◦ u(Ψ,Φ) ◦ T †
Ψ. (B.14)

From equation (B.14), it directly follows that
T †
Φ ◦ U ◦ TΨ = T †

Φ ◦ TΦ ◦ u(Ψ,Φ) ◦ T †
Ψ ◦ TΨ = u(Ψ,Φ),

where the final equality holds because T †
Ψ◦TΨ represents the orthogonal projection onto the orthogonal

complement of the kernel of TΨ, denoted (Ker(TΨ))
⊥, which is equivalent to the range of T †

Ψ, i.e.,
Ran(T †

Ψ). By our initial assumption, u(Ψ,Φ) maps the range of T †
Ψ into the range of T †

Φ. This
completes the proof of Remark 6.2.

B.5 SNOs are aliasing-free

We begin by establishing the mathematical foundation of the architecture of Spectral Neural Operators
(SNOs). For a positive integer K > 0, we define

PK =

{
g(x) =

K∑
k=−K

cke
iπkx : {ck}Kk=−K ∈ C2K+1

}
,

25

which represents the function space of signals that are 2-periodic and have their frequency content
limited to πK. The collection ΨK = {eiπk·}Kk=−K forms an orthonormal basis for the space PK .
We can define the associated synthesis operator TΨK

: C2K+1 → PK and its adjoint analysis operator
T ∗
ΨK

: PK → C2K+1 as follows:

TΨK
({ck}Kk=−K) =

K∑
k=−K

cke
iπk·, T ∗

ΨK
f = {⟨f, eiπk·⟩}Kk=−K .

The spectral neural operator architecture is constructed as a composition of three mappings: TΨK′ ◦
N ◦ T ∗

ΨK
, where the middle component N : C2K+1 → C2K′+1 represents a standard feedforward

neural network equipped with activation function σ. This network is structured as:

N (x) =W (L+1)σ(W (L) · · ·σ(W (2)σ(W (1)x− b(1))− b(2)) · · · − b(L))− b(L+1) (B.15)

where W (ℓ) denotes the weight matrices and b(ℓ) represents the bias vectors for layers ℓ = 1, . . . , L+
1.

The complete architectural framework can be visualized through the following commutative diagram:

PK C2K+1 C2K′+1 PK′

C2K+1 C2K+1 C2K′+1 C2K′+1

T∗
ΨK

T∗
ΨK

Id

N

Id

TΨ
K′

T∗
Ψ

K′

Id

TΨK

N Id

TΨ
K′

When implemented in discrete form, spectral neural operators reduce to conventional feedforward
neural networks that operate by transforming one set of Fourier coefficients into another. To establish
that SNOs qualify as ReNOs within the context of function spaces PK and P ′

K , it becomes necessary
to ensure that equation (6.3) holds for more general frame sequence selections. Furthermore, the SNO
framework admits natural extensions to accommodate arbitrary frames within finite-dimensional
inner-product spaces.

26

	Introduction
	Related Work
	Problem Statement
	Fourier Neural Operator
	Universal Approximation Properties of FNOs
	Aliasing Errors in FNOs
	Theoretical Analysis
	Representation equivalent Neural Operators (ReNO)
	Fourier layer in FNOs

	Empirical Analysis

	Spectral Neural Operator
	Numerical Experiments
	Governing Equations
	Data Generation
	Implementation Details
	Results

	Conclusion
	Notation
	Detailed Proofs and Technical Results for Section 5
	Proof of Lemma 5.3
	Proof of Lemma 5.4
	Proof of Lemma 5.5
	Proof of Remark 6.2
	SNOs are aliasing-free

