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ABSTRACT

This paper presents the Two-Area Recurrent Neural Network (2aRNN) model,
which extends the understanding of context-dependent decision-making processes
by simulating the neural dynamics observed in rhesus monkeys’ prefrontal cor-
tex during visual discrimination tasks. The 2aRNN model compartmentalizes
the processing of color and motion stimuli and context information into sep-
arate neural network regions, allowing for a detailed examination of how the
brain integrates multimodal sensory information under varying task demands.
Through the replication of dynamic responses and decision behaviors, the model
not only explains the flexible selection and integration of sensory inputs based
on context but also offers insights into the neural computational framework un-
derlying complex decision-making. The study further explores the impact of
temporal scale separation by adjusting the time constants of the two network
areas, revealing the model’s capacity to handle complex temporal dependen-
cies and its implications for cognitive neuroscience. Our code is available at
https://github.com/Aster2024/2aRNN.

1 INTRODUCTION

In the field of cognitive neuroscience, understanding how the brain processes and integrates complex
sensory information to guide decision-making is a central issue. Particularly in primates, this process
involves the coordinated effort of multiple brain regions, including the critical role of the prefrontal
cortex (PFC) in decision-making. In recent years, a series of innovative experiments conducted
on rhesus monkeys have allowed scientists to delve into the neural mechanisms underlying these
advanced cognitive functions (Mante et al., 2013).

The starting point for this study is a series of experiments recording neural activity in rhesus mon-
keys during visual discrimination tasks. These experiments involved two adult male rhesus monkeys
(designated as A and F), which were trained to excel in a two-alternative, forced-choice visual dis-
crimination task. In these tasks, the monkeys were required to make rapid judgments on the direction
of motion or color of random dots and report their decisions through saccadic eye movements. By
implanting electrodes in the monkeys’ heads, researchers were able to monitor neural activity asso-
ciated with eye movements, as well as electrophysiological signals related to the task.

These experiments have revealed the dynamic changes in the prefrontal cortex when processing mo-
tion and color information, and how this information is selectively integrated to produce behavioral
outputs. Particularly, how monkeys adjust their processing strategies for sensory information based
on the current task demands is evident in the patterns of neural activity. These findings not only pro-
vide crucial clues for our understanding of how the brain handles multimodal sensory information
but also offer an experimental foundation for developing computational models that can simulate
these complex neural dynamics.

Figure 1 demonstrates the dynamic responses of a Recurrent Neural Network (RNN) model that
was trained to simulate how the prefrontal cortex (PFC) processes evidence related to choice and
integrates this evidence into decision-making. The model successfully replicated the population
response trajectories observed in the PFC of macaque monkeys, showing that the same sensory
inputs (color and motion) lead to different movements along fixed axes under varying contexts. This
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Figure 1: Model dynamics and fixed points analysis of 1aRNN.

reveals that selection and integration are two aspects of a single dynamic process unfolding within
the same prefrontal circuits. In this way, the model not only explains how the PFC flexibly selects
and integrates sensory inputs based on context but also provides a potential neural computational
framework for understanding context-dependency in complex decision-making processes.

Building on the conclusions of Figure 1, this study aims to construct a 2aRNN (Two-Area Recurrent
Neural Network) model to simulate the processing of stimuli (color and motion) and context infor-
mation in separate compartments. Our goal is to validate the effectiveness of the 2aRNN model in
simulating complex decision-making tasks by replicating the dynamic responses and decision be-
haviors observed in Figure 1. Through this compartmentalized simulation, we expect to reveal how
the brain processes and integrates multimodal sensory information and makes adaptive decisions in
changing environments, achieving conclusions similar to those presented in Figure 1. Our code is
available at https://github.com/Aster2024/2aRNN.

2 RELATED WORKS 1

2.1 CONTEXT-DEPENDENT DECISION-MAKING MODELS

Context-dependent decision-making is a fundamental aspect of human cognition that has garnered
significant attention in cognitive science and neuroscience research (Lloyd & Leslie, 2013; Waskom
et al., 2017). Notably, (Mante et al., 2013) proposed a context-dependent decision-making model
to simulate the intricate behavior of the prefrontal cortex, advancing our understanding of neural
mechanisms underlying adaptive decision processes.

1This corresponds to Problem 1.
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2.2 TASK-ORIENTED RNN TRAINING

Recurrent Neural Networks (RNNs) (Medsker et al., 2001) have emerged as powerful tools for mod-
eling sequential data, demonstrating remarkable success across various domains, including complex
decision-making processes (Zhang et al., 2021). Task-oriented RNN training, a specialized approach
to optimizing these networks, involves tailoring the learning process to specific objectives or tasks.
This methodology is particularly relevant when modeling the sophisticated cognitive processes de-
scribed in (Mante et al., 2013), as it allows for the precise calibration of neural networks to mimic
observed neurobiological phenomena.

2.3 ONE-AREA RNN

As shown in Figure 2, the article modeled PFC responses with an RNN defined by the following
equations:

τ
dh

dt
= −h+Wrecϕ(h) +Wstimxstim +Wctxxctx + ξ

ϕ(x) = tanh(x), ξ(t) ∼ N (0, 1) i.i.d.

y = Woutϕ(h)

The 1aRNN model provides a framework for investigating how neural networks selectively integrate
sensory inputs from different contexts by modeling neural activity within a single region. As shown
in Fig 2, the inputs to the model are the sensory stimulus input signals xstim (color and motion)
and the task context input signal xctx, and the output was either +1 or −1, and corresponded to the
correct choice given the inputs and the context.

Figure 2: 1aRNN

The optimizer used to train the model is Adam (Kingma, 2014), which is a first-order gradient-based
optimization method that uses an adaptive learning rate to update the model’s weights.The Adam
optimizer combines the strengths of both RMSprop and Momentum optimization algorithms, and
is a widely used deep learning optimization algorithm.The loss function for training takes the mean
square error loss function

MSE =
1

n

n∑
i=1

(yi − ŷi)
2,

where yi is the true value, ŷi is the predicted value, and n is the number of samples. Accuracy is
calculated by comparing the selection of model output with metadata[’action’] with the following
formula

Accuracy =
Number of correct predictions
Total number of predictions

.
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When using the model to simulate a monkey making a decision, we divide the task into four phases
corresponding to times [300, 1000, 900, 500] (milliseconds). The specific task content of each phase
is as follows:

• Fixation (300): this is the initial phase of the task, which usually indicates that the target
or the participant’s eyes are focused on a fixation point before the stimulus is presented.
In neuroscience tasks, this phase is usually used to wait or prepare to receive the stimulus.
This is when the context information xcxt is started to be provided to the model and is
provided at each stage.

• Stimulus (1000): in this stage the stimuli xstm (motion, color) will be provided and the
model receives processing to deal with these stimuli.

• Delay (900): This stage is usually a “delay” stage, during which the model may need to
maintain memory of previous stimuli (e.g., a short-term memory task) without receiving
new stimuli.

• Response (500): The final phase is the response phase, during which the model needs to
make a decision based on the previous stimulus and/or context, and give the appropriate
choice (1 or −1).

3 APPROACH - TWO-AREA RNN

The One-Area RNN, while capable of modeling basic decision-making processes, has limitations in
capturing the complexity of context-dependent decisions. Its single-area architecture may struggle
to effectively separate context processing from decision formation, potentially leading to suboptimal
performance in tasks requiring flexible adaptation to changing contexts. To address these limitations,
we propose the Two-Area RNN model. This modular structure, inspired by the distinct functional
areas observed in the prefrontal cortex (Mante et al., 2013), allows for a more nuanced representation
of context-dependent information processing. By segregating the network into two interacting areas,
we hypothesize that the Two-Area RNN can more effectively integrate contextual information with
sensory inputs, leading to more robust and flexible decision-making in context-dependent tasks.

To mimic the partitioned thinking of the brain, we construct a 2aRNN (two-region recurrent neu-
ral network) model that simulates the processing of stimuli (color and motion) and contextual in-
formation in different regions. As shown in Figure 3, the article modeled PFC responses with a

Figure 3: 2aRNN

Two-Area-RNN defined by the following equations:

τ1
dh1

dt
= − h1 +Wrec

11 ϕ(h1) +Wrec
12 ϕ(h2) +Wstimxstim + ξ1

τ2
dh2

dt
= − h2 +Wrec

21 ϕ(h1) +Wrec
22 ϕ(h2) +Wctxxctx + ξ2
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ϕ(x) = tanh(x), ξ(t) ∼ N (0, 1) i.i.d.

y = Woutϕ(h)

The 2aRNN model consists of two RNNs corresponding to the network parameter matrices Wrec
11

and Wrec
22 , which are passed through the Wrec

12 and Wrec
21 to communicate. The inputs to the model

are sensory stimulus input signals xstim (color and action) and task context input signals xctx to the
first network (Area 1) and the second network (Area 2), respectively, and the outputs are either +1
or −1, corresponding to the correct choices under the stimulus and the context.

The training and simulation of the model are consistent with the training and simulation process of
the 1aRNN.

4 MODEL TRAINING2

4.1 METHOD

We train under different seeds, with each training session consisting of 100 epochs. In each
epoch, 100 trials are randomly generated. We use a batch size of 20 and employ the Adam opti-
mizer (Kingma, 2014) with a learning rate of 1× 10−3.

4.2 RESULT

(a) seed1 (b) seed2

(c) seed3 (d) seed4

Figure 4: Training Loss of 1aRNN and 2aRNN

1. We can easily see the loss of 2aRNN model drop down much faster than 1aRNN model at
the beginning phase of training.

2. The loss curve of 2aRNN model shows significant oscillation. The loss curve of 1aRNN is
relatively smooth.

3. The two loss curve are both unstable at final training stage, they both have big oscillations
at final training stage.

2This corresponds to Problem 2 & 3.
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5 REPRODUCTION OF FIG.5 IN (MANTE ET AL., 2013)3

5.1 METHOD

To display trajectories in state space, we projected the population responses onto the axes of a
subspace using linear regression.

h = β1 · choice.
h = β2 ·motion.

h = β3 · colour.
Here, h is the hidden layer, β1, β2, β3 are viewed as the direction in state space.
Then we orthogonalized these directions with QR-decomposition.

B := [β1, β2, β3] = QR.

Q is an orthogonal matrix, and R is an upper triangular matrix. We interpreted the first column of
Q as the choice axis, the second column of Q as the motion axis and the third column of Q as the
colour axis.
We projected the trajectories onto choice-motion and choice-colour plane respectively.

5.2 RESULT

5.2.1 1ARNN: REPRODUCTION OF FIG 1

(a) motion context, motion choice (b) motion context, colour choice (c) Sort by irrelevant colour

(d) Sort by irrelevant motion (e) colour choice, motion choice (f) colour choice, colour choice

Figure 5: Model dynamics and fixed points analysis

We tried to reproduce fig 1, but it didn’t quite work, and here’s where we got the same conclusion
as in the original article:

1. We found that in the motion (color) context, motion (color) -choice plane (Fig. 5a, 5f),
given different motion (color) stimuli, the model gives the correct choice.

2. The trajectory shows the process of the model receiving the stimulus, processing the infor-
mation, and making a decision. As shown in Fig. 5a, 5f, the trajectory starts at the coordi-
nate origin, and after accepting the stimulus, it first moves rapidly along the corresponding
direction of the motion (color) axis, then processes the information, moves rapidly along
the corresponding direction of the choice axis, and finally gets the correct choice.

3This corresponds to Problem 4 & 5.
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3. For different sizes of stimulus, the trajectory is also reflected. In Fig 5a, 5f, as the absolute
value of the motion (color) stimulus increases, the projection of the trajectory on the motion
(colour) axis is larger.

4. The projections of motion stimuli on the color axis (Fig. 1.b) and color stimuli on the
motion axis (Fig. 1.e) are very close to each other and nearly converge to zero. This
observation supports the conclusion that changes in one stimulus dimension have minimal
impact on the network’s representation of another stimulus dimension.

5. We found that in the motion(colour) context, color(motion)-choice plane (Fig. 5c, 5d),
given different color (motion) stimuli, the model made consistent choices in the face of
different stimuli. It indicates that the model will only focus on the information related to
the context in the given context situation, and irrelevant stimuli in a given context have
minimal impact on the network’s response.

Here’s what we failed to accomplish:

1. We were not able to find the same fixed points and linear attractor as in Fig. 1. we could
only find one immobile point, which is indeed close to the end point on one side in the mo-
tion (color) context, motion (color)-choice plan, but in the other plots, it is in a very strange
position. Therefore, the following is only a summary of the analysis of the immovable
point in the original paper.

5.2.2 2ARNN: REPRODUCTION OF FIG 1

(a) motion context, motion choice (b) motion context, colour choice (c) Sort by irrelevant colour

(d) Sort by irrelevant motion (e) colour choice, motion choice (f) colour choice, colour choice

Figure 6: Model dynamics and fixed points analysis area1

In 2aRNN we can find similar conclusions as in 1aRNN:

1. Conclusions 1–5 in the 1aRNN can all be seen in each region of the 2aRNN and will not
be repeated.

2. Comparing 2aRNN with 1aRNN, it was found that the projections of 2aRNN under the mo-
tion (color) context for different sized color (motion) stimuli under the colour (motion) axis
were much more indistinguishable, and were almost merged into a line or intertwined.(Fig.
6b,6e,7b,7e)

3. Comparing the two areas in the 2aRNN, it is found that for the whole trajectory, Area1
trajectory moves faster along the motion (color) axis when receiving stimulus at the very
beginning, and it moves faster and farther along the choice axis when processing the infor-
mation to make a choice in the middle. This is because Area1 is responsible for receiving
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(a) motion context, motion choice (b) motion context, colour choice (c) Sort by irrelevant colour

(d) Sort by irrelevant motion (e) colour choice, motion choice (f) colour choice, colour choice

Figure 7: Model dynamics and fixed points analysis area2

the stimulus information, while Area2 is responsible for receiving the context information
and outputting the decision at the end, so the trajectory graph reflects the division of labor
between the two Areas.

5.3 FIXED POINT ANALYSIS

Since we were not able to find the correct fixed points and slow points, we can only summarize the
fixed point analysis in the original article.

To discover the dynamical structure of the trained 1aRNN, the original paper found a large sample
of the RNN’s fixed points and slow points by minimizing the function:

F(h) =
1

2
∥ − h+Wrecϕ(h) +Wctxxctx∥2

corresponding to the 1aRNN update equation with input stimulus 0 and no noise.Since the network
actually implements two dynamical systems, one for each context, we studied the dynamical systems
for the motion context and the color context separately.

Figure 8: Fixed point analysis

They performed a linear stability analysis around each identified slow points h∗. We used a first-
order Taylor series approximation of the network update equation to create a linear dynamical sys-
tem,

δ̇h = F′(h∗)δh,

and then perform an eigenvector decomposition on the matrix F′(h∗) to obtain a set of right and left
eigenvectors. In a linear system, one eigenvalue is approximately zero, while all other eigenvalues
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have large negative real parts.As shown in fig 1 and fig 8, the right and left eigenvectors associated
with the zero eigenvalue correspond to the selection vectors (motion axis or color axis) and line
attractor, respectively.

6 TESTING ANOTHER TIME RATIO 4

Our methodological approach closely mirrors the aforementioned procedure. However, in this
iteration, we introduce a key modification to the 2aRNN model: we establish the relationship
τ2 = 10τ1. This adjustment aims to explore potential novel insights or divergent outcomes. By
setting τ2 = 10τ1 instead of τ2 = τ1, we expect to observe significant changes in the model’s dy-
namics. This modification likely introduces a temporal scale separation between Area 1 and Area
2, potentially enhancing the network’s ability to process information at different timescales simulta-
neously. Area 1 may become more responsive to rapid input changes, while Area 2 could integrate
information over longer periods, possibly improving the model’s capacity to handle complex tem-
poral dependencies. The findings from this modified experimental setup are presented below.

6.1 TRAINING RESULT

(a) seed1 (b) seed2

(c) seed3 (d) seed4

Figure 9: Training Loss of 1aRNN and 2aRNN with τ2 = 10τ1

1. The loss curve of the 2aRNN model decreases more slowly when τ2 = 10τ1.
2. The loss profile of the 2aRNN model at τ2 = 10τ1 is smoother than that of the 2aRNN

model at τ2 = τ1, which shows significant oscillations.

6.2 2ARNN: REPRODUCTION OF FIG 1 WITH τ2 = 10τ1

When comparing Fig 10 and Fig 11 (τ2 = 10τ1) to Fig 6 (equal time constants), we observe several
notable differences in the model dynamics of area 1:

• Trajectory Complexity: Fig 10 and Fig 11 exhibit more complex and intricate trajectories
across all contexts. This suggests that the longer time constant in area 2 leads to more
elaborate information processing in area 1.

4This corresponds to Problem 6 (Bonus exercise).
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(a) motion context, motion choice (b) motion context, colour choice (c) Sort by irrelevant colour

(d) Sort by irrelevant motion (e) colour choice, motion choice (f) colour choice, colour choice

Figure 10: Model dynamics and fixed points analysis area1 with τ2 = 10τ1

(a) motion context, motion choice (b) motion context, colour choice (c) Sort by irrelevant colour

(d) Sort by irrelevant motion (e) colour choice, motion choice (f) colour choice, colour choice

Figure 11: Model dynamics and fixed points analysis area2 with τ2 = 10τ1
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• Trajectory Spread: The trajectories in Fig 10 and Fig 11 generally occupy a larger portion
of the phase space, suggesting that the network explores a wider range of states before
settling.

These observations suggest that increasing the time constant of area 2 relative to area 1 leads to more
complex dynamics and potentially richer representational capacity in the two-area RNN model for
context-dependent decision-making.

7 COMPARATIVE ANALYSIS OF 1ARNN AND 2ARNN WITH REDUCED
HIDDEN SIZE 5

To further differentiate the performance of the 1aRNN and 2aRNN models, we conducted an ad-
ditional experiment by reducing the hidden size of both networks to 20 units. This modification
yielded two significant findings:

7.1 ACCURACY DISPARITY

The reduction in hidden size led to a notable divergence in accuracy between the two models. Using
5 seeds, the 1aRNN model achieved an accuracy of 85.80% ± 18.43%, while the 2aRNN model
maintained a high accuracy of 96.00% ± 3.74%. This substantial difference in performance under-
scores the 2aRNN model’s superior capability in handling context-dependent decision-making tasks,
even with limited computational resources. The 2aRNN’s ability to maintain near-perfect accuracy
despite the reduced hidden size demonstrates its enhanced efficiency in processing and integrating
multimodal sensory information and context cues.

7.2 ENHANCED PHASE PORTRAIT DIFFERENTIATION

The second key observation was a more pronounced differentiation in the phase portraits, particu-
larly in the regions corresponding to task-irrelevant variables. This increased contrast in the phase
space representations provides clearer visual evidence of the fundamental differences in how 1aRNN
and 2aRNN process and represent information. The 2aRNN’s distinct handling of task-relevant
and task-irrelevant information becomes more apparent, highlighting its sophisticated approach to
context-dependent information processing.

(a) motion context, motion choice (b) motion context, colour choice (c) Sort by irrelevant colour

(d) Sort by irrelevant motion (e) colour choice, motion choice (f) colour choice, colour choice

Figure 12: Model dynamics and fixed points analysis for 1aRNN with reduced hidden size

5This section was added based on the instructor’s feedback and suggestions for improvement.
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(a) motion context, motion choice (b) motion context, colour choice (c) Sort by irrelevant colour

(d) Sort by irrelevant motion (e) colour choice, motion choice (f) colour choice, colour choice

Figure 13: Model dynamics and fixed points analysis for area1 of 2aRNN with reduced hidden size

(a) motion context, motion choice (b) motion context, colour choice (c) Sort by irrelevant colour

(d) Sort by irrelevant motion (e) colour choice, motion choice (f) colour choice, colour choice

Figure 14: Model dynamics and fixed points analysis for area2 of 2aRNN with reduced hidden size
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These findings not only reinforce the superiority of the 2aRNN model in context-dependent decision-
making tasks but also demonstrate its robustness and efficiency when operating with limited com-
putational resources. The enhanced differentiation in phase portraits provides valuable insights into
the underlying mechanisms of information processing in these neural network architectures.

8 CONCLUSION

In this study, we successfully developed and implemented a Two-Area Recurrent Neural Network
(2aRNN) model to simulate context-dependent decision-making processes. Our model effectively
compartmentalized the processing of color and motion stimuli, as well as context information, into
separate neural network regions. This approach allowed us to replicate the dynamic responses and
decision behaviors observed in the prefrontal cortex of rhesus monkeys during visual discrimination
tasks.

The 2aRNN model demonstrated its capability to integrate multimodal sensory information under
varying task demands, providing insights into how the brain flexibly selects and processes inputs
based on contextual cues. By adjusting the time constants of the two network areas, we explored
the impact of temporal scale separation, revealing the model’s ability to handle complex temporal
dependencies in cognitive processes.

While our results are promising and align with previous findings, there are several areas for im-
provement and future research:

1. Visualization Enhancement: The current graphical representations of our model’s dy-
namics could be refined to improve clarity and interpretability. Future work should focus
on developing more sophisticated visualization techniques to better illustrate the complex
interactions within the 2aRNN.

2. Advanced Architectures: Although our RNN-based approach yielded valuable results,
exploring more modern architectures such as Transformers (Vaswani, 2017) or other
attention-based models could potentially capture even more nuanced aspects of context-
dependent decision-making.

3. Biological Plausibility: Further research could focus on enhancing the biological plausi-
bility of our model, incorporating more detailed neurophysiological constraints and mech-
anisms observed in actual prefrontal cortex circuits.

4. Extended Task Domains: While our model successfully simulated visual discrimination
tasks, future work could extend the 2aRNN to other cognitive domains, testing its general-
izability and potential for modeling a broader range of context-dependent behaviors.

In conclusion, our 2aRNN model represents a significant step forward in computational neuro-
science’s ability to simulate and understand complex cognitive processes. By successfully modeling
context-dependent decision-making, we have provided a valuable tool for future research in cogni-
tive neuroscience and artificial intelligence. As we continue to refine and expand this model, we
anticipate it will contribute to a deeper understanding of how the brain integrates information and
adapts to changing environmental demands.
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